Class Tensor
Represents one of the outputs of an Operation
.
Aliases:
- Class
tf.compat.v1.Tensor
- Class
tf.compat.v2.Tensor
tf.compat.v1.SessionA Tensor is a symbolic handle to one of the outputs of an Operation. It does not hold the values of that operation's output, but instead provides a means of computing those values in a TensorFlow .
This class has two primary purposes:
In the
following e
xample
, c
, d
, and
e
are
symbolic
Tensor
obje``c
ts, whe
re
as result
is a numpy array that store
s a c
onc
re
te
value
:
# Build a dataflow graph.
c = tf.constant([[1.0, 2.0], [3.0, 4.0]])
d = tf.constant([[1.0, 1.0], [0.0, 1.0]])
e = tf.matmul(c, d)
# Construct a `Session` to execute the graph.
sess = tf.compat.v1.Session()
# Execute the graph and store the value that `e` represents in `result`.
result = sess.run(e)
init
__init__(
op,
value_index,
dtype
)
Creates a new Tensor
.
Args:
op
: AnOperation
.Operation
that computes this tensor.value_index
: Anint
. Index of theop
eration's endpoint
that produces this tensor.dtype
: ADType
. Type of elements stored in this tensor.
Raises:
TypeError
: If the op is not anOperation
.
Properties
device
The name of the device on which this tensor will be produced, or None.
dtype
The DType
of elements in this tensor.
graph
The Graph
that contains this tensor.
name
The string name of this tensor.
op
The Operation
that produces this tensor as an output.
shape
Returns the TensorShape
that represents the shape of this tensor.
tf.TensorShapeThe shape is computed using shape inference functions that are registered in the Op for each Operation. See for more details of what a shape represents.
The inferred shape of a tensor is used to provide shape information without having to launch the graph in a session. This can be used for debugging, and providing early error messages. For example:
c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
print(c.shape)
==> TensorShape([Dimension(2), Dimension(3)])
d = tf.constant([[1.0, 0.0], [0.0, 1.0], [1.0, 0.0], [0.0, 1.0]])
print(d.shape)
==> TensorShape([Dimension(4), Dimension(2)])
# Raises a ValueError, because `c` and `d` do not have compatible
# inner dimensions.
e = tf.matmul(c, d)
f = tf.matmul(c, d, transpose_a=True, transpose_b=True)
print(f.shape)
==> TensorShape([Dimension(3), Dimension(4)])
Tensor.set_shape()In some cases, the inferred shape may have unknown dimensions. If the caller has additional information about the values of these dimensions, can be used to augment the inferred shape.
Returns:
A TensorShape
representing the shape of this tensor.
value_index
The index of this tensor in the outputs of its Operation
.
Methods
abs
__abs__(
x,
name=None
)
Computes the absolute value of a tensor.
Given a tensor of integer or floating-point values, this operation returns a tensor of the same type, where each element contains the absolute value of the corresponding element in the input.
Given a tensor x
of complex
numbers, this operation returns a tensor of type float32
or float64
that is the absolute value of each element in x
. All elements in x
must be complex
numbers of the form
. The absolute value is computed as
. For ex
ample:
x = tf.constant([[-2.25 + 4.75j], [-3.25 + 5.75j]])
tf.abs(x) # [5.25594902, 6.60492229]
Args:
x
: ATensor
orSparseTensor
of typefloat16
,float32
,float64
,int32
,int64
,complex64
orcomplex128
.name
: Aname
for the operation (optional).
Returns:
A Tensor
or SparseTensor
the same size, type, and sparsity as x
with absolute values. Note, for complex64
or complex128
input, the returned Tensor
will be of type float32
or float64
, respectively.
If x
is a SparseTensor
, returns SparseTensor
(x
.indices, tf.math.abs(x
.values, ...), x
.dense_shape)
add
__add__(
x,
y
)
Dispatches to add for strings and add_v2 for all other types.
and
__and__(
x,
y
)
Returns the truth value of x AND y element-wise. math.logical_andNOTE: supports broadcasting. More about broadcasting here
Args:
x
: ATensor
of typebool
.y
: ATensor
of ty
pebool
.name
: Aname
for the operation (optional).
Returns:
A Tensor
of type bool
.
bool
__bool__()
Dummy method to prevent a tensor from being used as a Python bool
.
This overload raises a TypeError
when the user inadvertently treats a Tensor
as a boolean (most commonly in an if
or while
statement), in code that was not converted by AutoGraph. For example:
if tf.constant(True): # Will raise.
# ...
if tf.constant(5) < tf.constant(7): # Will raise.
# ...
Raises:
TypeError
.
div
__div__(
x,
y
)
Divide two values using Python 2 semantics. Used for Tensor.div.
Args:
x
:Tensor
numerator of real numeric type.y
:Tensor
denominator of real numeric ty
pe.name
: Aname
for the operation (optional).
Returns:
x / y
returns the quotient of x and y.
eq
__eq__(other)
Compares two tensors element-wise for equality.
floordiv
__floordiv__(
x,
y
)
Divides x / y
elementwise, rounding toward the most negative integer.
tf.compat.v1.div(x,y)The same as for integers, but uses tf.floor() for floating point arguments so that the result is always an integer (though possibly an integer represented as floating point). This op is generated by x // y floor division in Python 3 and in Python 2.7 with from future import division.
x
and y
must have the same ty
pe, and the result will have the same ty
pe as well.
Args:
x
:Tensor
numerator of real numeric type.y
:Tensor
denominator of real numeric ty
pe.name
: Aname
for the operation (optional).
Returns:
x / y
rounded down.
Raises:
TypeError
: If the inputs are complex.
ge
Defined in generated file: python/ops/gen_math_ops.py
__ge__(
x,
y,
name=None
)
Returns the truth value of (x >= y) element-wise. math.greater_equalNOTE: supports broadcasting. More about broadcasting here
Args:
x
: ATensor
. Must be one of the following types:float32
,float64
,int32
,uint8
,int16
,int8
,int64
,bfloat16
,uint16
,half
,uint32
,uint64
.y
: ATensor
. Must have the same ty
pe asx
.name
: Aname
for the operation (optional).
Returns:
A Tensor
of type bool
.
getitem
__getitem__(
tensor,
slice_spec,
var=None
)
Overload for Tensor.getitem. This operation extracts the specified region from the tensor. The notation is similar to NumPy with the restriction that currently only support basic indexing. That means that using a non-scalar tensor as input is not currently allowed.
Some useful examples:
# Strip leading and trailing 2 elements
foo = tf.constant([1,2,3,4,5,6])
print(foo[2:-2].eval()) # => [3,4]
# Skip every other row and reverse the order of the columns
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[::2,::-1].eval()) # => [[3,2,1], [9,8,7]]
# Use scalar tensors as indices on both dimensions
print(foo[tf.constant(0), tf.constant(2)].eval()) # => 3
# Insert another dimension
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
print(foo[:, tf.newaxis, :].eval()) # => [[[1,2,3]], [[4,5,6]], [[7,8,9]]]
print(foo[:, :, tf.newaxis].eval()) # => [[[1],[2],[3]], [[4],[5],[6]],
[[7],[8],[9]]]
# Ellipses (3 equivalent operations)
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[tf.newaxis, :, :].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
print(foo[tf.newaxis, ...].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
print(foo[tf.newaxis].eval()) # => [[[1,2,3], [4,5,6], [7,8,9]]]
# Masks
foo = tf.constant([[1,2,3], [4,5,6], [7,8,9]])
print(foo[foo > 2].eval()) # => [3, 4, 5, 6, 7, 8, 9]
Notes:
tf.newaxis
isNone
as in NumPy.- An implicit ellipsis is placed at the end of the
slice_spec
- NumPy advanced indexing is currently not supported.
Args:
tensor
: An ops.Tensor object.slice_spec
: The arguments to Tensor.getitem.var
: In the case ofvar
iable slice assignment, the Variable object to slice (i.e.tensor
is the read-only view of thisvar
iable).
Returns:
The appropriate slice of "tensor", based on "slice_spec".
Raises:
ValueError
: If a slice range is negative size.TypeError
: If the slice indices aren't int, slice, ellipsis, tf.newaxis or scalar int32/int64 tensors.
gt
Defined in generated file: python/ops/gen_math_ops.py
__gt__(
x,
y,
name=None
)
Returns the truth value of (x > y) element-wise. math.greaterNOTE: supports broadcasting. More about broadcasting here
Args:
x
: ATensor
. Must be one of the following types:float32
,float64
,int32
,uint8
,int16
,int8
,int64
,bfloat16
,uint16
,half
,uint32
,uint64
.y
: ATensor
. Must have the same ty
pe asx
.name
: Aname
for the operation (optional).
Returns:
A Tensor
of type bool
.
invert
Defined in generated file: python/ops/gen_math_ops.py
__invert__(
x,
name=None
)
Returns the truth value of NOT x element-wise.
Args:
x
: ATensor
of typebool
.name
: Aname
for the operation (optional).
Returns:
A Tensor
of type bool
.
iter
__iter__()
le
Defined in generated file: python/ops/gen_math_ops.py
__le__(
x,
y,
name=None
)
Returns the truth value of (x <= y) element-wise. math.less_equalNOTE: supports broadcasting. More about broadcasting here
Args:
x
: ATensor
. Must be one of the following types:float32
,float64
,int32
,uint8
,int16
,int8
,int64
,bfloat16
,uint16
,half
,uint32
,uint64
.y
: ATensor
. Must have the same ty
pe asx
.name
: Aname
for the operation (optional).
Returns:
A Tensor
of type bool
.
len
__len__()
lt
Defined in generated file: python/ops/gen_math_ops.py
__lt__(
x,
y,
name=None
)
Returns the truth value of (x < y) element-wise. math.lessNOTE: supports broadcasting. More about broadcasting here
Args:
x
: ATensor
. Must be one of the following types:float32
,float64
,int32
,uint8
,int16
,int8
,int64
,bfloat16
,uint16
,half
,uint32
,uint64
.y
: ATensor
. Must have the same ty
pe asx
.name
: Aname
for the operation (optional).
Returns:
A Tensor
of type bool
.
matmul
__matmul__(
x,
y
)
Multiplies ma
trix a
b
y ma
trix b
, producing a
* b
.
The inputs must, following any transpositions, be tensors of rank >= 2 where the inner 2 dimensions specify valid matrix multiplication arguments, and any further outer dimensions match.
Both matrices must be of the same type. The supported types are: float16
, float32
, float64
, int32
, complex64
, complex128
.
Either matrix can be transposed or adjointed (conjugated and transposed) on the fly by setting one of the corresponding flag to True
. These are False
by default.
If one or both of the matrices contain a lot of zeros, a more efficient multiplication algorithm can be used by setting the corresponding a_is_sparse
or b_is_sparse
flag to True
. These are False
by default. This optimization is only available for plain matrices (rank-2 tensors) with datatypes bfloat16
or float32
.
For example:
# 2-D tensor `a`
# [[1, 2, 3],
# [4, 5, 6]]
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
# 2-D tensor `b`
# [[ 7, 8],
# [ 9, 10],
# [11, 12]]
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])
# `a` * `b`
# [[ 58, 64],
# [139, 154]]
c = tf.matmul(a, b)
# 3-D tensor `a`
# [[[ 1, 2, 3],
# [ 4, 5, 6]],
# [[ 7, 8, 9],
# [10, 11, 12]]]
a = tf.constant(np.arange(1, 13, dtype=np.int32),
shape=[2, 2, 3])
# 3-D tensor `b`
# [[[13, 14],
# [15, 16],
# [17, 18]],
# [[19, 20],
# [21, 22],
# [23, 24]]]
b = tf.constant(np.arange(13, 25, dtype=np.int32),
shape=[2, 3, 2])
# `a` * `b`
# [[[ 94, 100],
# [229, 244]],
# [[508, 532],
# [697, 730]]]
c = tf.matmul(a, b)
# Since python >= 3.5 the @ operator is supported (see PEP 465).
# In TensorFlow, it simply calls the `tf.matmul()` function, so the
# following lines are equivalent:
d = a @ b @ [[10.], [11.]]
d = tf.matmul(tf.matmul(a, b), [[10.], [11.]])
Args:
a
:Tensor
of typefloat16
,float32
,float64
,int32
,complex64
,complex128
a
nd ra
nk > 1.b
:Tensor
with sa
me typea
nd ra
nka
sa
.transpose_a
: IfTrue
,a
is tra
nsposedb
efore multiplica
tion.transpose_b
: IfTrue
,b
is tra
nsposedb
efore multiplica
tion.a
djoint_a
: IfTrue
,a
is conjuga
teda
nd tra
nsposedb
efore multiplica
tion.a
djoint_b
: IfTrue
,b
is conjuga
teda
nd tra
nsposedb
efore multiplica
tion.a
_is_spa
rse: IfTrue
,a
is trea
teda
sa
spa
rse ma
trix.b
_is_spa
rse: IfTrue
,b
is trea
teda
sa
spa
rse ma
trix.name
: Na
me for the opera
tion (optiona
l).
Returns:
A Tensor
of the sa
me type a
s a
a
nd b
where ea
ch inner-most ma
trix is the product of the corresponding ma
trices in a
a
nd b
, e.g. if a
ll tra
nspose or a
djoint a
ttrib
utes a
re False
:
output
[..., i, j] = sum_k (a
[..., i, k] * b
[..., k, j]), for a
ll indices i, j.
Note
: This is matrix product, not element-wise product.
Raises:
ValueError
: If transpose_a and adjoint_a, or transpose_b and adjoint_b are both set to True.
mod
__mod__(
x,
y
)
Returns element-wise remainder of division. When x < 0
xor y < 0
is
true, this follows Python semantics in that the result here is consistent with a flooring divide. E.g. floor(x / y) * y + mod(x, y) = x.
math.floormodNOTE: supports broadcasting. More about broadcasting here
Args:
x
: ATensor
. Must be one of the following types:int32
,int64
,bfloat16
,half
,float32
,float64
.y
: ATensor
. Must have the same ty
pe asx
.name
: Aname
for the operation (optional).
Returns:
A Tensor
. Has the same type as x
.
mul
__mul__(
x,
y
)
Dispatches cwise mul for "DenseDense" and "DenseSparse".
ne
__ne__(other)
Compares two tensors element-wise for equality.
neg
Defined in generated file: python/ops/gen_math_ops.py
__neg__(
x,
name=None
)
Computes numerical negative value element-wise. I.e., .
Args:
x
: ATensor
. Must be one of the following types:bfloat16
,half
,float32
,float64
,int32
,int64
,complex64
,complex128
.name
: Aname
for the operation (optional).
Returns:
A Tensor
. Has the same type as x
.
If x
is a SparseTensor
, returns SparseTensor
(x
.indices, tf.math.negative(x
.values, ...), x
.dense_shape)
nonzero
__nonzero__()
Dummy method to prevent a tensor from being used as a Python bool
.
This is the Python 2.x counterpart to __bool__
() above.
Raises:
TypeError
.
or
__or__(
x,
y
)
Returns the truth value of x OR y element-wise. math.logical_orNOTE: supports broadcasting. More about broadcasting here
Args:
x
: ATensor
of typebool
.y
: ATensor
of ty
pebool
.name
: Aname
for the operation (optional).
Returns:
A Tensor
of type bool
.
pow
__pow__(
x,
y
)
Computes the power of one value to another.
Given a tensor x
and a tensor y
, this operation computes
for corresponding elements in x
and y
. For ex
ample:
x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y) # [[256, 65536], [9, 27]]
Args:
x
: ATensor
of typefloat16
,float32
,float64
,int32
,int64
,complex64
, orcomplex128
.y
: ATensor
of ty
pefloat16
,float32
,float64
,int32
,int64
,complex64
, orcomplex128
.name
: Aname
for the operation (optional).
Returns:
A Tensor
.
radd
__radd__(
y,
x
)
Dispatches to add for strings and add_v2 for all other types.
rand
__rand__(
y,
x
)
Returns the truth value of x AND y element-wise. math.logical_andNOTE: supports broadcasting. More about broadcasting here
Args:
x
: ATensor
of typebool
.y
: ATensor
of ty
pebool
.name
: Aname
for the operation (optional).
Returns:
A Tensor
of type bool
.
rdiv
__rdiv__(
y,
x
)
Divide two values using Python 2 semantics. Used for Tensor.div.
Args:
x
:Tensor
numerator of real numeric type.y
:Tensor
denominator of real numeric ty
pe.name
: Aname
for the operation (optional).
Returns:
x / y
returns the quotient of x and y.
rfloordiv
__rfloordiv__(
y,
x
)
Divides x / y
elementwise, rounding toward the most negative integer.
tf.compat.v1.div(x,y)The same as for integers, but uses tf.floor() for floating point arguments so that the result is always an integer (though possibly an integer represented as floating point). This op is generated by x // y floor division in Python 3 and in Python 2.7 with from future import division.
x
and y
must have the same ty
pe, and the result will have the same ty
pe as well.
Args:
x
:Tensor
numerator of real numeric type.y
:Tensor
denominator of real numeric ty
pe.name
: Aname
for the operation (optional).
Returns:
x / y
rounded down.
Raises:
TypeError
: If the inputs are complex.
rmatmul
__rmatmul__(
y,
x
)
Multiplies ma
trix a
b
y ma
trix b
, producing a
* b
.
The inputs must, following any transpositions, be tensors of rank >= 2 where the inner 2 dimensions specify valid matrix multiplication arguments, and any further outer dimensions match.
Both matrices must be of the same type. The supported types are: float16
, float32
, float64
, int32
, complex64
, complex128
.
Either matrix can be transposed or adjointed (conjugated and transposed) on the fly by setting one of the corresponding flag to True
. These are False
by default.
If one or both of the matrices contain a lot of zeros, a more efficient multiplication algorithm can be used by setting the corresponding a_is_sparse
or b_is_sparse
flag to True
. These are False
by default. This optimization is only available for plain matrices (rank-2 tensors) with datatypes bfloat16
or float32
.
For example:
# 2-D tensor `a`
# [[1, 2, 3],
# [4, 5, 6]]
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
# 2-D tensor `b`
# [[ 7, 8],
# [ 9, 10],
# [11, 12]]
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])
# `a` * `b`
# [[ 58, 64],
# [139, 154]]
c = tf.matmul(a, b)
# 3-D tensor `a`
# [[[ 1, 2, 3],
# [ 4, 5, 6]],
# [[ 7, 8, 9],
# [10, 11, 12]]]
a = tf.constant(np.arange(1, 13, dtype=np.int32),
shape=[2, 2, 3])
# 3-D tensor `b`
# [[[13, 14],
# [15, 16],
# [17, 18]],
# [[19, 20],
# [21, 22],
# [23, 24]]]
b = tf.constant(np.arange(13, 25, dtype=np.int32),
shape=[2, 3, 2])
# `a` * `b`
# [[[ 94, 100],
# [229, 244]],
# [[508, 532],
# [697, 730]]]
c = tf.matmul(a, b)
# Since python >= 3.5 the @ operator is supported (see PEP 465).
# In TensorFlow, it simply calls the `tf.matmul()` function, so the
# following lines are equivalent:
d = a @ b @ [[10.], [11.]]
d = tf.matmul(tf.matmul(a, b), [[10.], [11.]])
Args:
a
:Tensor
of typefloat16
,float32
,float64
,int32
,complex64
,complex128
a
nd ra
nk > 1.b
:Tensor
with sa
me typea
nd ra
nka
sa
.transpose_a
: IfTrue
,a
is tra
nsposedb
efore multiplica
tion.transpose_b
: IfTrue
,b
is tra
nsposedb
efore multiplica
tion.a
djoint_a
: IfTrue
,a
is conjuga
teda
nd tra
nsposedb
efore multiplica
tion.a
djoint_b
: IfTrue
,b
is conjuga
teda
nd tra
nsposedb
efore multiplica
tion.a
_is_spa
rse: IfTrue
,a
is trea
teda
sa
spa
rse ma
trix.b
_is_spa
rse: IfTrue
,b
is trea
teda
sa
spa
rse ma
trix.name
: Na
me for the opera
tion (optiona
l).
Returns:
A Tensor
of the sa
me type a
s a
a
nd b
where ea
ch inner-most ma
trix is the product of the corresponding ma
trices in a
a
nd b
, e.g. if a
ll tra
nspose or a
djoint a
ttrib
utes a
re False
:
output
[..., i, j] = sum_k (a
[..., i, k] * b
[..., k, j]), for a
ll indices i, j.
Note
: This is matrix product, not element-wise product.
Raises:
ValueError
: If transpose_a and adjoint_a, or transpose_b and adjoint_b are both set to True.
rmod
__rmod__(
y,
x
)
Returns element-wise remainder of division. When x < 0
xor y < 0
is
true, this follows Python semantics in that the result here is consistent with a flooring divide. E.g. floor(x / y) * y + mod(x, y) = x.
math.floormodNOTE: supports broadcasting. More about broadcasting here
Args:
x
: ATensor
. Must be one of the following types:int32
,int64
,bfloat16
,half
,float32
,float64
.y
: ATensor
. Must have the same ty
pe asx
.name
: Aname
for the operation (optional).
Returns:
A Tensor
. Has the same type as x
.
rmul
__rmul__(
y,
x
)
Dispatches cwise mul for "DenseDense" and "DenseSparse".
ror
__ror__(
y,
x
)
Returns the truth value of x OR y element-wise. math.logical_orNOTE: supports broadcasting. More about broadcasting here
Args:
x
: ATensor
of typebool
.y
: ATensor
of ty
pebool
.name
: Aname
for the operation (optional).
Returns:
A Tensor
of type bool
.
rpow
__rpow__(
y,
x
)
Computes the power of one value to another.
Given a tensor x
and a tensor y
, this operation computes
for corresponding elements in x
and y
. For ex
ample:
x = tf.constant([[2, 2], [3, 3]])
y = tf.constant([[8, 16], [2, 3]])
tf.pow(x, y) # [[256, 65536], [9, 27]]
Args:
x
: ATensor
of typefloat16
,float32
,float64
,int32
,int64
,complex64
, orcomplex128
.y
: ATensor
of ty
pefloat16
,float32
,float64
,int32
,int64
,complex64
, orcomplex128
.name
: Aname
for the operation (optional).
Returns:
A Tensor
.
rsub
__rsub__(
y,
x
)
Returns x - y element-wise. hereNOTE: Subtract supports broadcasting. More about broadcasting
Args:
x
: ATensor
. Must be one of the following types:bfloat16
,half
,float32
,float64
,uint8
,int8
,uint16
,int16
,int32
,int64
,complex64
,complex128
.y
: ATensor
. Must have the same ty
pe asx
.name
: Aname
for the operation (optional).
Returns:
A Tensor
. Has the same type as x
.
rtruediv
__rtruediv__(
y,
x
)
rxor
__rxor__(
y,
x
)
Logical XOR function. x ^ y = (x | y) & ~(x & y) Inputs are tensor and if the tensors contains more than one element, an element-wise logical XOR is computed.
Usage:
x = tf.constant([False, False, True, True], dtype = tf.bool)
y = tf.constant([False, True, False, True], dtype = tf.bool)
z = tf.logical_xor(x, y, name="LogicalXor")
# here z = [False True True False]
Args:
x
: ATensor
type bool.y
: ATensor
of ty
pe bool.
Returns:
A Tensor
of type bool with the same size as that of x or y.
sub
__sub__(
x,
y
)
Returns x - y element-wise. hereNOTE: Subtract supports broadcasting. More about broadcasting
Args:
x
: ATensor
. Must be one of the following types:bfloat16
,half
,float32
,float64
,uint8
,int8
,uint16
,int16
,int32
,int64
,complex64
,complex128
.y
: ATensor
. Must have the same ty
pe asx
.name
: Aname
for the operation (optional).
Returns:
A Tensor
. Has the same type as x
.
truediv
__truediv__(
x,
y
)
xor
__xor__(
x,
y
)
Logical XOR function. x ^ y = (x | y) & ~(x & y) Inputs are tensor and if the tensors contains more than one element, an element-wise logical XOR is computed.
Usage:
x = tf.constant([False, False, True, True], dtype = tf.bool)
y = tf.constant([False, True, False, True], dtype = tf.bool)
z = tf.logical_xor(x, y, name="LogicalXor")
# here z = [False True True False]
Args:
x
: ATensor
type bool.y
: ATensor
of ty
pe bool.
Returns:
A Tensor
of type bool with the same size as that of x or y.
consumers
consumers()
Returns a list of Operation
s that consume this tensor.
Returns:
A list of Operation
s.
eval
eval(
feed_dict=None,
session=None
)
Evaluates this tensor in a Session
.
Calling this method will execute all preceding operations that produce the inputs needed for the operation that produces this tensor.
Tensor.eval()N.B. Before invoking , its graph must have been launched in a session, and either a default session must be available, or session must be specified explicitly.
Args:
feed_dict
: A dictionary that mapsTensor
objects to feed values. Seetf.Session.run
for a description of the valid feed values.session
: (Optional.) TheSession
to be used to evaluate this tensor. If none, the defaultsession
will be used.
Returns:
A numpy array corresponding to the value of this tensor.
experimental_ref
experimental_ref()
Returns a hashable reference object to this Tensor.
The primary usecase for this API is to put tensors in a set/dictionary. We can't put tensors in a set/dictionary as tensor.__hash__
() is no longer available starting Tensorflow 2.0.
import tensorflow as tf
x = tf.constant(5)
y = tf.constant(10)
z = tf.constant(10)
# The followings will raise an exception starting 2.0
# TypeError: Tensor is unhashable if Tensor equality is enabled.
tensor_set = {x, y, z}
tensor_dict = {x: 'five', y: 'ten', z: 'ten'}
Instead, we can use tensor.experimental_ref
().
tensor_set = {x.experimental_ref(),
y.experimental_ref(),
z.experimental_ref()}
print(x.experimental_ref() in tensor_set)
==> True
tensor_dict = {x.experimental_ref(): 'five',
y.experimental_ref(): 'ten',
z.experimental_ref(): 'ten'}
print(tensor_dict[y.experimental_ref()])
==> ten
Also, the reference object provides .deref
() function that returns the original Tensor.
x = tf.constant(5)
print(x.experimental_ref().deref())
==> tf.Tensor(5, shape=(), dtype=int32)
get_shape
get_shape()
Alias of Tensor.shape.
set_shape
set_shape(shape)
Updates the shape of this tensor.
This method can be called multiple times, and will merge the given shape
with the current shape
of this tensor. It can be used to provide additional information about the shape
of this tensor that cannot be inferred from the graph alone. For example, this can be used to provide additional information about the shape
s of images:
_, image_data = tf.compat.v1.TFRecordReader(...).read(...)
image = tf.image.decode_png(image_data, channels=3)
# The height and width dimensions of `image` are data dependent, and
# cannot be computed without executing the op.
print(image.shape)
==> TensorShape([Dimension(None), Dimension(None), Dimension(3)])
# We know that each image in this dataset is 28 x 28 pixels.
image.set_shape([28, 28, 3])
print(image.shape)
==> TensorShape([Dimension(28), Dimension(28), Dimension(3)])
tf.ensure_shapeNOTE: This shape is not enforced at runtime. Setting incorrect shapes can result in inconsistencies between the statically-known graph and the runtime value of tensors. For runtime validation of the shape, use instead.
Args:
shape
: ATensorShape
representing theshape
of this tensor, aTensorShape
Proto, a list, a tuple, or None.
Raises:
ValueError
: Ifshape
is not compatible with the currentshape
of this tensor.
Class Members
OVERLOADABLE_OPERATORS