Converts the given value to a Tensor.
Aliases:
tf.compat.v2.convert_to_tensor
tf.convert_to_tensor(
value,
dtype=None,
dtype_hint=None,
name=None
)
Used in the guide:
Eagerexecution
Used in the tutorials:
AutomaticdifferentiationandgradienttapeCustomtraining:walkthrough``DeepDreamNeuralmachinetranslationwithattentionThis function converts Python objects of various types toTensorobjects. It acceptsTensorobjects, numpy arrays, Python lists, and Python scalars. For example:
import numpy as np
def my_func(arg):
arg = tf.convert_to_tensor(arg, dtype=tf.float32)
return tf.matmul(arg, arg) + arg
# The following calls are equivalent.
value_1 = my_func(tf.constant([[1.0, 2.0], [3.0, 4.0]]))
value_2 = my_func([[1.0, 2.0], [3.0, 4.0]])
value_3 = my_func(np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32))
This function can be useful when composing a new operation in Python (such as my_func in the example above). All standard Python op constructors apply this function to each of their Tensor-valued inputs, which allows those ops to accept numpy arrays, Python lists, and scalars in addition to Tensor objects.
Args:
value: An object whose type has a registeredTensorconversion function.dtype: Optional element type for the returned tensor. If missing, the type is inferred from the type ofvalue.dtype_hint: Optional element type for the returned tensor, used whendtypeis None. In some cases, a caller may not have adtypein mind when converting to a tensor, sodtype_hint can be used as a soft preference. If the conversion todtype_hint is not possible, this argument has no effect.name: Optionalnameto use if a newTensoris created.
Returns:
A Tensor based on value.
Raises:
TypeError: If no conversion function is registered forvaluetodtype.RuntimeError: If a registered conversion function returns an invalidvalue.ValueError: If thevalueis a tensor not of givendtypein graph mode.