Class random_normal_initializer
Initializer that generates tensors with a normal distribution. InitializerInherits From:
Aliases:
- Class
tf.compat.v2.initializers.RandomNormal - Class
tf.compat.v2.keras.initializers.RandomNormal - Class
tf.compat.v2.random_normal_initializer - Class
tf.initializers.RandomNormal - Class
tf.keras.initializers.RandomNormal
Used in the guide:
WritingcustomlayersandmodelswithKeras
Used in the tutorials:
Pix2Pix
Args:
mean: a python scalar or a scalar tensor. Mean of the random values to generate.stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate.seed: A Python integer. Used to create randomseeds. Seetf.compat.v1.set_random_seedfor behavior.
init
__init__(
mean=0.0,
stddev=0.05,
seed=None
)
Initialize self. See help(type(self)) for accurate signature.
Methods
call
__call__(
shape,
dtype=tf.dtypes.float32
)
Returns a tensor object initialized as specified by the initializer.
Args:
shape: Shape of the tensor.dtype: Optionaldtypeof the tensor. Only floating point types are supported.
Raises:
ValueError: If the dtype is not floating point
from_config
from_config(
cls,
config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args:
config: A Python dictionary. It will typically be the output ofget_config.
Returns:
An Initializer instance.
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns:
A JSON-serializable Python dict.