Class random_normal_initializer
Initializer that generates tensors with a normal distribution. InitializerInherits From:
Aliases:
- Class
tf.compat.v2.initializers.RandomNormal
- Class
tf.compat.v2.keras.initializers.RandomNormal
- Class
tf.compat.v2.random_normal_initializer
- Class
tf.initializers.RandomNormal
- Class
tf.keras.initializers.RandomNormal
Used in the guide:
W
ri
ti
ng
c
us
to
ml
a
ye
rs
a
nd
m
od
el
sw
i
th
K
er
as
Used in the tutorials:
P
ix
2P
ix
Args:
mean
: a python scalar or a scalar tensor. Mean of the random values to generate.stddev
: a python scalar or a scalar tensor. Standard deviation of the random values to generate.seed
: A Python integer. Used to create randomseed
s. Seetf.compat.v1.set_random_seed
for behavior.
init
__init__(
mean=0.0,
stddev=0.05,
seed=None
)
Initialize self. See help(type(self)) for accurate signature.
Methods
call
__call__(
shape,
dtype=tf.dtypes.float32
)
Returns a tensor object initialized as specified by the initializer.
Args:
shape
: Shape of the tensor.dtype
: Optionaldtype
of the tensor. Only floating point types are supported.
Raises:
ValueError
: If the dtype is not floating point
from_config
from_config(
cls,
config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args:
config
: A Python dictionary. It will typically be the output ofget_config
.
Returns:
An Initializer instance.
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
Returns:
A JSON-serializable Python dict.