Concatenates tensors along one dimension.
Aliases:
tf.compat.v1.concattf.compat.v2.concat
tf.concat(
values,
axis,
name='concat'
)
Used in the guide:
Raggedtensors``
Used in the tutorials:
Betterperformancewithtf.functionImagecaptioningwithvisualattention``NeuralmachinetranslationwithattentionTransformermodelforlanguageunderstanding``UnicodestringsConcatenates the list of tensorsvaluesalong dimensionaxis. Ifvalues[i].shape = [D0, D1, ... Daxis(i), ...Dn], the concatenated result has shape
[D0, D1, ... Raxis, ...Dn]
where
Raxis = sum(Daxis(i))
That is, the data from the input tensors is joined along the axis dimension.
The number of dimensions of the input tensors must match, and all dimensions except axis must be equal.
For example:
t1 = [[1, 2, 3], [4, 5, 6]]
t2 = [[7, 8, 9], [10, 11, 12]]
tf.concat([t1, t2], 0) # [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
tf.concat([t1, t2], 1) # [[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
# tensor t3 with shape [2, 3]
# tensor t4 with shape [2, 3]
tf.shape(tf.concat([t3, t4], 0)) # [4, 3]
tf.shape(tf.concat([t3, t4], 1)) # [2, 6]
As in Python, the axis could also be negative numbers. Negative axis are interpreted as counting from the end of the rank, i.e., axis + rank(values)-th dimension.
For example:
t1 = [[[1, 2], [2, 3]], [[4, 4], [5, 3]]]
t2 = [[[7, 4], [8, 4]], [[2, 10], [15, 11]]]
tf.concat([t1, t2], -1)
would produce:
[[[ 1, 2, 7, 4],
[ 2, 3, 8, 4]],
[[ 4, 4, 2, 10],
[ 5, 3, 15, 11]]]
tf.concat([tf.expand_dims(t, axis) for t in tensors], axis)
can be rewritten as
tf.stack(tensors, axis=axis)
Args:
values: A list ofTensorobjects or a singleTensor.
Returns:
A Tensor resulting from concatenation of the input tensors.