BatchToSpace for N-D tensors of type T.
Aliases:
tf.compat.v2.batch_to_space
tf.batch_to_space(
input,
block_shape,
crops,
name=None
)
This operation reshapes the "batch" dimension 0 into M + 1 dimensions of shape block_shape + [batch], interleaves these blocks back into the grid defined by the spatial dimensions [1, ..., M], to obtain a result with the same rank as the input. The spatial dimensions of this intermediate result are then optionally cropped according to crops to produce the output. This is the reverse of SpaceToBatch. See below for a precise description.
Args:
input: ATensor. N-D with shapeinput_shape = [batch] + spatial_shape + remaining_shape, where spatial_shape has M dimensions.block_shape: ATensor. Must be one of the following types:int32,int64. 1-D with shape[M], all values must be >= 1. For backwards compatibility with TF 1.0, this parameter may be an int, in which case it is converted to numpy.array([block_shape,block_shape], dtype=numpy.int64).crops: ATensor. Must be one of the following types:int32,int64. 2-D with shape[M, 2], all values must be >= 0.crops[i] = [crop_start, crop_end] specifies the amount to crop frominputdimensioni + 1, which corresponds to spatial dimensioni. Itis required that crop_start[i] + crop_end[i] <=block_shape[i] *input_shape[i + 1]. This operationis equivalent to the following steps: Reshapeinputtoreshapedof shape: [block_shape[0], ...,block_shape[M-1], batch / prod(block_shape),input_shape[1], ...,input_shape[N-1]] 2. Permute dimensions ofreshapedto producepermutedof shape [batch / prod(block_shape),input_shape[1],block_shape[0], ...,input_shape[M],block_shape[M-1],input_shape[M+1], ...,inputshape[N-1]] 3. Reshapepermutedto producereshapedpermutedof shape [batch / prod(block_shape),input_shape[1] *block_shape[0], ...,input_shape[M]*block_shape[M-1],input_shape[M+1], ...,inputshape[N-1]] 4. Crop the start and end of dimensions[1, ..., M]ofreshapedpermutedaccording tocropsto produce the output of shape: [batch / prod(block_shape),input_shape[1] *block_shape[0] -crops[0,0] -crops[0,1], ...,input_shape[M]*block_shape[M-1] -crops[M-1,0] -crops[M-1,1],input_shape[M+1], ...,input_shape[N-1]] Some examples: (1) For the followinginputof shape[4, 1, 1, 1],block_shape= [2, 2], andcrops= [[0, 0], [0, 0]]:[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]The output tensor has shape[1, 2, 2, 1]and value:x = [[[[1], [2]], [[3], [4]]]](2) For the followinginputof shape[4, 1, 1, 3],block_shape= [2, 2], andcrops= [[0, 0], [0, 0]]:[[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]]The output tensor has shape[1, 2, 2, 3]and value:x = [[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]](3) For the followinginputof shape[4, 2, 2, 1],block_shape= [2, 2], andcrops= [[0, 0], [0, 0]]:x = [[[[1], [3]], [[9], [11]]], [[[2], [4]], [[10], [12]]], [[[5], [7]], [[13], [15]]], [[[6], [8]], [[14], [16]]]]The output tensor has shape[1, 4, 4, 1]and value:x = [[[1], [2], [3], [4]], [[5], [6], [7], [8]], [[9], [10], [11], [12]], [[13], [14], [15], [16]]](4) For the followinginputof shape[8, 1, 3, 1],block_shape= [2, 2], andcrops= [[0, 0], [2, 0]]:x = [[[[0], [1], [3]]], [[[0], [9], [11]]], [[[0], [2], [4]]], [[[0], [10], [12]]], [[[0], [5], [7]]], [[[0], [13], [15]]], [[[0], [6], [8]]], [[[0], [14], [16]]]]The output tensor has shape[2, 2, 4, 1]and value: ``- Reshape
inputtoreshapedof shape: [block_shape[0], ...,block_shape[M-1], batch / prod(block_shape),input_shape[1], ...,input_shape[N-1]] 2. Permute dimensions ofreshapedto producepermutedof shape [batch / prod(block_shape),input_shape[1],block_shape[0], ...,input_shape[M],block_shape[M-1],input_shape[M+1], ...,inputshape[N-1]] 3. Reshapepermutedto producereshapedpermutedof shape [batch / prod(block_shape),input_shape[1] *block_shape[0], ...,input_shape[M]*block_shape[M-1],input_shape[M+1], ...,inputshape[N-1]] 4. Crop the start and end of dimensions[1, ..., M]ofreshapedpermutedaccording tocropsto produce the output of shape: [batch / prod(block_shape),input_shape[1] *block_shape[0] -crops[0,0] -crops[0,1], ...,input_shape[M]*block_shape[M-1] -crops[M-1,0] -crops[M-1,1],input_shape[M+1], ...,input_shape[N-1]] Some examples: (1) For the followinginputof shape[4, 1, 1, 1],block_shape= [2, 2], andcrops= [[0, 0], [0, 0]]:[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]The output tensor has shape[1, 2, 2, 1]and value:x = [[[[1], [2]], [[3], [4]]]](2) For the followinginputof shape[4, 1, 1, 3],block_shape= [2, 2], andcrops= [[0, 0], [0, 0]]:[[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]]The output tensor has shape[1, 2, 2, 3]and value:x = [[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]](3) For the followinginputof shape[4, 2, 2, 1],block_shape= [2, 2], andcrops= [[0, 0], [0, 0]]:x = [[[[1], [3]], [[9], [11]]], [[[2], [4]], [[10], [12]]], [[[5], [7]], [[13], [15]]], [[[6], [8]], [[14], [16]]]]The output tensor has shape[1, 4, 4, 1]and value:x = [[[1], [2], [3], [4]], [[5], [6], [7], [8]], [[9], [10], [11], [12]], [[13], [14], [15], [16]]](4) For the followinginputof shape[8, 1, 3, 1],block_shape= [2, 2], andcrops= [[0, 0], [2, 0]]:x = [[[[0], [1], [3]]], [[[0], [9], [11]]], [[[0], [2], [4]]], [[[0], [10], [12]]], [[[0], [5], [7]]], [[[0], [13], [15]]], [[[0], [6], [8]]], [[[0], [14], [16]]]]The output tensor has shape[2, 2, 4, 1]and value:x = [[[[1], [2], [3], [4]], [[5], [6], [7], [8]]], [[[9], [10], [11], [12]], [[13], [14], [15], [16]]]] : Afor the operation (optional).
Returns:
A Tensor. Has the same type as input.