Apply boolean mask to tensor.
Aliases:
tf.compat.v2.boolean_mask
tf.boolean_mask(
tensor,
mask,
axis=None,
name='boolean_mask'
)
Numpy equivalent is tensor[mask].
# 1-D example
tensor = [0, 1, 2, 3]
mask = np.array([True, False, True, False])
boolean_mask(tensor, mask) # [0, 2]
In general, 0 < dim(mask) = K <= dim(tensor), and mask's shape must match the first K dimensions of tensor's shape. We then have: boolean_mask(tensor, mask)[i, j1,...,jd] = tensor[i1,...,iKi1,...,iK,j1,...,jd] where (i1,...,iKi1,...,iK) is the ith True entry of mask (row-major order). The axis could be used with mask to indicate the axis to mask from. In that case, axis + dim(mask) <= dim(tensor) and mask's shape must match the first axis + dim(mask) dimensions of tensor's shape.
tf.ragged.boolean_maskSee also: , which can be applied to both dense and ragged tensors, and can be used if you need to preserve the masked dimensions of tensor (rather than flattening them, as tf.boolean_mask does).
Args:
tensor: N-Dtensor.mask: K-D booleantensor, K <= N and K must be known statically.axis: A 0-D int Tensor representing theaxisintensortomaskfrom. By default,axisis 0 which willmaskfrom the first dimension. Otherwise K +axis<= N.name: Anamefor this operation (optional).
Returns:
(N-K+1)-dimensional tensor populated by entries in tensor corresponding to True values in mask.
Raises:
ValueError: If shapes do not conform.
Examples:
# 2-D example
tensor = [[1, 2], [3, 4], [5, 6]]
mask = np.array([True, False, True])
boolean_mask(tensor, mask) # [[1, 2], [5, 6]]