Gather slices from params
into a Tensor with shape specified by indices
.
Aliases:
tf.compat.v2.gather_nd
tf.gather_nd(
params,
indices,
batch_dims=0,
name=None
)
indices
is an K-dimensional integer tensor, best thought of as a (K-1)-dimensional tensor of indices
into params
, where each element defines a slice of params
:
output[\\(i_0, ..., i_{K-2}\\)] = params[indices[\\(i_0, ..., i_{K-2}\\)]]
tf.gatherWhereas in indices defines slices into the first dimension of params, in _nd, indices defines slices into the first N dimensions of params, where N = indices.shape[-1].
The last dimension of indices
can be at most the rank of params
:
indices.shape[-1] <= params.rank
The last dimension of indices
corresponds to elements (if indices
.shape[-1] == params
.rank) or slices (if indices
.shape[-1] < params
.rank) along dimension indices
.shape[-1] of params
. The output tensor has shape
indices.shape[:-1] + params.shape[indices.shape[-1]:]
Additionally both 'params' and 'indices' can have M leading batch dimensions that exactly match. In this case 'batch_dims' must be M. Note that on CPU, if an out of bound index is found, an error is returned. On GPU, if an out of bound index is found, a 0 is stored in the corresponding output value. Some examples below. Simple indexing into a matrix:
indices = [[0, 0], [1, 1]]
params = [['a', 'b'], ['c', 'd']]
output = ['a', 'd']
Slice indexing into a matrix:
indices = [[1], [0]]
params = [['a', 'b'], ['c', 'd']]
output = [['c', 'd'], ['a', 'b']]
Indexing into a 3-tensor:
indices = [[1]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [[['a1', 'b1'], ['c1', 'd1']]]
indices = [[0, 1], [1, 0]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [['c0', 'd0'], ['a1', 'b1']]
indices = [[0, 0, 1], [1, 0, 1]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = ['b0', 'b1']
The examples below are for the case when only indices have leading extra dimensions. If both 'params' and 'indices' have leading batch dimensions, use the 'batch_dims' parameter to run gather_nd in batch mode. Batched indexing into a matrix:
indices = [[[0, 0]], [[0, 1]]]
params = [['a', 'b'], ['c', 'd']]
output = [['a'], ['b']]
Batched slice indexing into a matrix:
indices = [[[1]], [[0]]]
params = [['a', 'b'], ['c', 'd']]
output = [[['c', 'd']], [['a', 'b']]]
Batched indexing into a 3-tensor:
indices = [[[1]], [[0]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [[[['a1', 'b1'], ['c1', 'd1']]],
[[['a0', 'b0'], ['c0', 'd0']]]]
indices = [[[0, 1], [1, 0]], [[0, 0], [1, 1]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [[['c0', 'd0'], ['a1', 'b1']],
[['a0', 'b0'], ['c1', 'd1']]]
indices = [[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [['b0', 'b1'], ['d0', 'c1']]
Examples with batched 'params' and 'indices':
batch_dims = 1
indices = [[1], [0]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [['c0', 'd0'], ['a1', 'b1']]
batch_dims = 1
indices = [[[1]], [[0]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [[['c0', 'd0']], [['a1', 'b1']]]
batch_dims = 1
indices = [[[1, 0]], [[0, 1]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [['c0'], ['b1']]
tf.gatherSee also .
Args:
params
: ATensor
. The tensor from which to gather values.indices
: ATensor
. Must be one of the following types:int32
,int64
. Index tensor.name
: Aname
for the operation (optional).batch_dims
: An integer or a scalar 'Tensor
'. The number of batch dimensions.
Returns:
A Tensor
. Has the same type as params
.